Efficient known ncRNA search including pseudoknots
نویسندگان
چکیده
منابع مشابه
CyloFold: secondary structure prediction including pseudoknots
UNLABELLED Computational RNA secondary structure prediction approaches differ by the way RNA pseudoknot interactions are handled. For reasons of computational efficiency, most approaches only allow a limited class of pseudoknot interactions or are not considering them at all. Here we present a computational method for RNA secondary structure prediction that is not restricted in terms of pseudok...
متن کاملPredicting RNA Secondary Structures Including Pseudoknots
RNA secondary structures play a vital role in modern genetics and a lot of time and e ort has been put into their study. It is important to be able to predict them with high accuracy, since methods involving manual analysis are expensive, time-consuming and error-prone. Predictions can also be used to guide experiments to reduce time and money requirements. Several algorithms have been develope...
متن کاملEfficient annotation of non-coding RNA structures including pseudoknots via automated filters.
Computational search of genomes for RNA secondary structure is an important approach to the annotation of non-coding RNAs. The bottleneck of the search is sequence-structure alignment, which is often computationally intensive. A plausible solution is to devise effective filters that can efficiently remove segments unlikely to contain the desired structure patterns in the genome and to apply sea...
متن کاملNew Heuristic Algorithm of RNA Structure Prediction Including Pseudoknots
Computational models and methods for predicting secondary structure of RNA sequence are in demand. Based on MFE principle and the relative stability of the n-stems in RNA molecules, Minimum Free Energy method is adopted widely to predict RNA secondary structure. An improved heuristic algorithm is presented to predict RNA pseudoknotted structure, and it can compute arbitrary pseudoknots. The alg...
متن کاملAccurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2013
ISSN: 1471-2105
DOI: 10.1186/1471-2105-14-s2-s25